Galois Theory and the Insolvability of the Quintic Equation
نویسنده
چکیده
منابع مشابه
A Short Elementary Proof of the Insolvability of the Equation of Degree 5
We present short elementary proofs of the well-known Ruffini-Abel-Galois theorems on unsolvability of algebraic equations in radicals. This proof is obtained from existing expositions by stripping away material not required for the proof (but presumably required elsewhere). In particular, we do not use the terms ‘Galois group’ and even ‘group’. However, our presentation is a good way to learn (...
متن کاملA FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS
The fixed point alternative methods are implemented to giveHyers-Ulam stability for the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces). This methodintroduces a met...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملNUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE
This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...
متن کاملSolving the quintic by iteration
Equations that can be solved using iterated rational maps are characterized: an equation is ‘computable’ if and only if its Galois group is within A5 of solvable. We give explicitly a new solution to the quintic polynomial, in which the transcendental inversion of the icosahedral map (due to Hermite and Kronecker) is replaced by a purely iterative algorithm. The algorithm requires a rational ma...
متن کامل